A Fast Algorithm for Lacunary Wavelet Bases Related to the Solution of Pdes

نویسنده

  • Kai Schneider
چکیده

{ We describe a transform for locally reened wavelet bases which employs the cardinal Lagrange function instead of the scaling function. This construction is extended to biorthogonal vaguelettes into which a diierential operator is incorporated. The approach is relevant for the solution of nonlinear parabolic PDEs by an explicit or semi{ implicit time scheme when the nonlinear term is evaluated in physical space. Une transformation en bases lacunaires de vaguelettes biorthogonales pour la r esolution d'EDP R esum e { Nous d ecrivons d'abord une transformation en base localement adapt ee d'ondelettes qui utilise la fonction cardinale a la place de la fonction d' echelle. La construction est g en eralis ee aux vaguelettes biorthogonales construites en faisant intervenir un op erateur dii erentiel. Ceci permet d'appliquer l'algorithme a la r esolution d' equation aux d eriv ees partielles paraboliques nonlin eaires discretis ees par un sch ema explicite ou semi{implicite en temps, dans le cas o u la nonlin earit e est evalu ee dans l'espace physique. Version abr eg ee en frann cais { 1. Introduction. { Cette note se situe dans le cadre de la r esolution d'une EDP en temps et espace, ce dernier etant discr etis e par une base adaptative d'ondelettes a chaque pas de temps. L' evaluation de termes nonlin eaires n ecessite en g en eral des transformations entre l'espace physique et l'espace des coeecients d'ondelettes. Pour cela, l'algorithme classique de Mallat est diicilement applicable du fait de l'utilisation de la fonction d' echelle. Dans le but d'am eliorer l'algorithme de 1], nous d ecrivons une telle transformation par collocation locale dans l'esprit de 4]. La deuxi eme composante de la m ethode est la prise en compte d'un op erateur dii erentiel dans la construction de vaguelettes biorthogonales 3]. Nous construisons alors la transformation sur base lacunaire correspondante et rapportons quelques tests. 2. Multir esolution p eriodique. { A partir d'une multir esolution (MRA) g en er ee par les translat ees et dilat ees de b IR 2 L 2 (IR) une MRA p eriodique est obtenue par (1) 5]. La fonction cardinale (si elle existe) en d ecoule par (2). 3. Transformation en base lacunaire d'ondelettes. { Pour un ensemble lacunaire de coeecients non nuls on doit calculer leur valeurs directement et non pas par 1 FFT pour b en eecier de leur petit nombre. Au lieu d'une projection …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Wavelet{vaguelette Algorithm for the Solution of Pdes Adaptive Wavelet{vaguelette Algorithm

The paper rst describes a fast algorithm for the discrete orthonormal wavelet transform and its inverse without using the scaling function. This approach permits to compute the decomposition of a function into a lacunary wavelet basis, i.e. a basis constituted of a subset of all basis functions up to a certain scale, without modi cation. The construction is then extended to operator{adapted bi{...

متن کامل

Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations

In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...

متن کامل

HAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE

We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.

متن کامل

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

Time Accurate Fast Wavelet-Taylor Galerkin Method for Partial Differential Equations

We introduce the concept of fast wavelet-Taylor Galerkin methods for the numerical solution of partial differential equations. In wavelet-Taylor Galerkin method discretization in time is performed before the wavelet based spatial approximation by introducing accurate generalizations of the standard Euler, and leap-frog time-stepping scheme with the help of Taylor series expansions in the time s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995